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Converse inequalities are proved for a family of operators that state the
equivalence of two terms of error in approximation to the revelant modulus of
smoothness. Such inequalities have been proved by Z. Ditzian and K. G. Ivanov
with a different method. Our emphasis is that these so-called strong converse
inequalities follow from some standard estimates on the derivatives of the operators
without additional work; hence we extend the Ditzian-Ivanov result to a large
family of operators. The method of the paper is very close in spirit to the classical
parabola technique.  © 1994 Academic Press, Inc.

Let fe C[0, 1],
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B(fix)=2 f|= x(1—x)
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the associated Bernstein polynomials and with ¢(x)=./x(1 —x)
w,(f38)= sup (47,1l

0<r<d

= sup sup |f(x —19(x)) = 2f(x) +f(x + 19(x))| (1)

0<1<d x

the second modulus of smoothness with step-weight function ¢, where the
second supremum is taken for those values x for which every argument
belongs to [0, 1] (we mention that the standard notation for w,, would be
wi_see, e.g, [2]—Dbut for the sake of simplicity we drop the upper index
because we shall always work with moduli of smoothness of order 2). The
estimate

1
18,(f)—fll<Cw, (f; 7;) n=1,2,..
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with some absolute constant C is well known (see, e.g., [2]), but in
the other direction only Stechkin-type estimates have been used in the
literature (see [2]). In a recent breakthrough, Z. Ditzian and K. G. Ivanov
[1] verified that actually there is a K such that

1
o0 (A ) S CTUBLN -1+ 1B =11 =12

holds for every m = Kn. Thus, by choosing m = Kn we get the equivalence

1
e I Bn - BKn - s
ww(f ﬁ> 1B =f1 + 1B~

where ~ means that the ratio of the two sides remains in between two
positive absolute constants.

Ditzian and Ivanov combined a new estimate involving the
Voronovskaya of B,(f) with some more familiar ones to get the above
converse result. The aim of this paper is to show that the same goal can be
achieved by using some well-known estimates, thereby we extend the above
converse result to a family of more general operators.

In fact, let {L,} be a sequence of positive operators acting on the
continuous functions defined on some interval I. Typical examples are the
Bernstein operators mentioned above, the Szasz-Mirakjan operators

(nx)*

x k
S(fix)= 3 f(;)e*”"*k—,, 7eCl0, w),
k=0 *

the Baskakov operators

viro=3 (5" ) e s reciow),
k=0

and related ones.
We assume that L, leaves linear functions invariant, i.e.,

L,(t—x;x)=0,
and that
L,((t—x)% x) =a,0*(x) (2)
with some function ¢, e.g., a,=1/n, @(x)=./x(1—x) for the Bernstein

operators, a, = 1/n, (,o(x)=\/)—c for the Szasz—Mirakjan operators, and
a,=1/n, p(x)=./x(1 + x) for the Baskakov operators (cf. [2, Chap. 9]).
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We assume that the sequence {a,} is decreasing and satisfies
gy <3t n=1,2,.. (3)

with some K. Besides these we need some inequalities involving the
derivatives of the L,, namely

I0LANN <C o/ )
C
LA < 17, (5)
1°LI U <55 171, ©)
10°LI N <= 107 ™
Ja,

with the appropriate smoothness assumptions on L,(f) and f. Each of
these is well known (see [2, Chap. 97) for the classical operators
mentioned above with the possible exception of (7) which is a variation on
the inequality (6) and can be obtained with the same methods (see in
[2, Sect.9.7]).

We need one more technical assumption on L,, which is, however, a
very natural one in view of the positivity of L, and the moment condition
(2). This is the following: let 2> 0 be fixed and

Em=Ea.m= {x() I xoia\/ Ay (p(XO)EI},

(= (1= %0 if [t~ Xo| = M /%, 9(xo)
Brtom 1) = 0 otherwise.
Then'
Lm(gM,m,xo;xO)/(am(pz(xo))_’O (8)

as M — oo uniformly in m and x,€ E, . This condition is again well
known for the classical operators mentioned above. If we compare it with
(2), we can see that it claims a certain localization for L,,.

The corresponding modulus of smoothness is defined as in (1) except
that now the second supremum is taken for those values x for which every
argument belongs to /. As usual, we need some restrictions on ¢ (see

1t is tacitly assumed that L, is defined for the non-continuous function g, ,, .
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[2, Sect. 1.2]); namely we assume that it is continuous and positive, and at
the endpoints of [ it behaves like a power of the distance from the
endpoint: if ¢ is a finite endpoint of I then

p(x)~|x—alf® as x-a
with some 0 < fi(a) < 1, while if a is plus or minus infinity, then
@(x) ~ |x|F as x—a

with some 0< f(a)<1. These are again trivially satisfied in the cases
discussed above.
With these assumptions we can now prove

THEOREM 1. Suppose the positive operators {L,} satisfy the above
conditions. Then there exist two constants K, and C, such that for all
feCl)and n

1LV =11 < Croo, (s /), (9)
and for m=2Kn
0,5 /1) SC (LA =1+ ULl ) = 1) (10)

Proof. In the proof below, C denotes constants that depend exclusively
on ¢ and the constants C above.

The proof of (9) is standard, but for completeness we include it. The
assumptions on ¢ easily imply that for twice continuously differentiable g

2
lg(t)—g(x) ~ g'(x)(1 = x)| <C (;2(3 lo%’ (11)
and hence
1 _ 2
8(0) — 8(0) ~ g (1~ x) 3 ()t~ x)? <c‘;2(3 0%’ (12)

for all x, ¢ I, which, combined with the positivity of L, and (2), implies
IL.(8)—gl < Ca, llo7g"|. (13)
Thus,

ILA(f)=f1 < igf (If—gll + Ca, 978" 1l),
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and it is well known (see [2, Theorem 2.1.1]) that the right-hand side is

equivalent to w,(f;/a,).
Using the last remark the estimate

o, lo? Ly (I <C 'Sl L) =fI+ L, () =11 (14)

proves (10).
Fix a B> 1 that is specified below. If

1L.(f) =11 S%" oLy (I (13)

is not satisfied, then (14) is clearly true, so in what follows we may assume
(15).
We get from (6), (7), and (15) (for any B> 1) that

o’ L (< @ (Ly o L(f) = LN + 1o (L, o L ()"

C C 2w
<W||Ln(f)—f\l+ﬁll(ﬂ LM

C

NS

Let us choose a small a> 0 to be specified below and consider the set E,
of those x e/ for which xia\/;;q)(x)el. For the sake of simplicity we
assume that E, is an interval, but the consideration below can be easily
modified when this is not the case. Our next aim is to show that by
appropriately choosing a>0 (and B> 1) the supremum norm of L,(f) on
E, is comparable to that on the whole I Let 4, be the twice continuously
differentiable function that coincides with L,(f) on E, and is a polynomial
of degree at most two on the two intervals of I\ E,. Equation (12) applied
to the two endpoints of £, immediately implies that

I8, — L) < Ca’a,, |@*L,(f)].

Hence we obtain from (4) and (5)

<

oL (I (16)

C
lo? L (O < l@’Li(f = Al + oLy (k)] < =R+ C oAyl
C
S (L) =Rl + L) = fID+ € o)

C
<Ca? |’ L ()] + 3 lo? L) + Clo* Ly ()],
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where we have also used (15) and that the assumptions on ¢ imply that the

value of ¢2 on the two subintervals of /\E, is at most a constant times its
value at the two endpoints of E,; hence we have the inequality

lo*h ;< Cllo*Ly (e,
because the second derivative of A, is constant (and equals the second

derivative of L,(f) at the endpoints of E,) on the two subintervals of I\ E,.
Thus, by choosing a>0 and B> 1 appropriately we can see that

1oL < Co koL g, (17)

Hence, there exists an x, € £, such that, say,

1
@*(xo) Ly(f3 x0) 2 o lo* L (/).

Since on E, we are “far” from the finite endpoint(s) of 7, (16) easily implies
that then

1
@*(x0) L(f5 1) ZEE; o> LN

is also satisfied provided lt—xolé\/Z(p(xU)/A with some A >1 inde-
pendent of f and n. Hence,

L(f't)’_L(f'x)—Ll(f'?C)(I—x )>—1—H 2L”(f)|| (t—xo)z
AR T BN

for |t — xo) < /o, ¢(x,)/A. For other 1 we apply (11), which, together with
the preceding inequality yields that for every ¢

L(f; )= L(f;x0)— L,(f: xo)(t — Xo) Z 1@ L () H(2),  (18)
where

(1 — x9)*/4C, i = xo] < /o, @(x0)/4
—C(t—x0)* /0 (x4) otherwise,

Hn(r)={

and C, is a constant that does not depend on f or » and is chosen so large
that the preceding inequality holds (see (11)).
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Now all we have to do is to apply the operator L,,, m>n to the last
inequality. It follows from (3) and (8) that there is a K; >0 such that if
m = K n, then

L,(H,; x) > >—— oLy (N,

which, together with (18), yields

ML f =S+ 2| LAS) =S Z I LW(La(f)) — f)H>8C 2L (NI,
0

and this proves (14). |

It may happen that the operators L, do not possess the necessary
smoothness required by the inequalities (4)-(7), but some iterates of them
do satisfy the analogues of these inequalities. This is the case for example
with the averaging operators discussed in [1]. In such cases the above
argument can be applied to the corresponding iterates as was done by
Ditzian and Ivanov. I would add, however, that Ditzian and Ivanov dis-
cussed some non-positive operators, as well, for which case the geometric
approach outlined in this paper cannot work.
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